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THE TWO DIMENSIONAL CONTACT PROBLEM OF A

ROUGH STAMP SLIDING SLOWLY ON AN ELASTIC

LAYER—I. GENERAL CONSIDERATIONS AND THICK
LAYER ASYMPTOTICS

J. B. ALBLAS and M. KUIPERS
Technological University Eindhoven, Netherlands

Abstract — An approximate solution is obtained for the contact problem of a layer of finite thickness loaded by a
rough cylindrical stamp which moves along the boundary. The coefficient of friction is assumed to be constant.
The lower side of the layer is attached to a rigid base. In the problem inertial forces are neglected and the solution
is approximated by a plane strain solution. This solution is presented in the form of a (convergent) series expan-
sion in powers of the reciprocal thickness parameter, i.e. the ratio of the values of the thickness and the length of
the contact region. The coefficients in this expansion satisfy singular integral equations. Numerical results are
obtained for large values of the thickness parameter. In part II of this investigation the thin layer asymptotics
will be given.

1. INTRODUCTION

IN SOME recent papers [1, 2] we considered an elastic layer loaded in plane strain by rigid
smooth stamps. The lower side of the layer was supposed to be attached to a rigid base or
to slide without friction along the base, e.g. on a fluid film. In [1] we constructed an
approximate solution for the problem of a cylindrical stamp on a layer with a very small
thickness parameter, i.e. the ratio of the thickness of the layer and the width (or half width)
of the contact region. Dealing with a rectangular block loaded by a force and a moment [2]
we obtained approximate solutions both for the thick and for the thin layer. In the papers
{1] and [2] we treated compressible and incompressible layers separately. We did not
consider the thick layer asymptotics for the cylindrical stamp in [1], as this problem has
been treated adequately in the literature[3, 4],

In this paper, consisting of two parts, we deal with a class of similar problems which
likewise may be discussed within the framework of linear elasticity. We now assume that
the stamp is rigid and rough, and slides slowly along the boundary of the layer. Obviously
we only have to consider a layer attached to a fixed base. When dealing with thin layers
we also limit our considerations to compressible material. The extension of the problem
under discussion to some of the other boundary value problems that have been treated
in[1]and[2]is obvious.

We shall assume that the friction coefficient is constant and that the motion is slow
to justify the disregard of inertial forces.

In the first part of the paper we derive an integral equation for the pressure under the
stamp. A rigorous analytical solution for this equation may be obtained in the form of a
series expansion in powers of the reciprocal thickness parameter. It may be expected that
this formal solution converges for all values of the thickness parameter larger than two.
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100 J. B. ALBLAS and M. KUIPERS

However, for practical computations, only values larger than four can be taken into con-
sideration. With the methods of part Il very small values of the thickness parameter
are studied. The approximate solution for intermediate values of the thickness parameter
may be obtained by interpolation of the results of the two parts.

The expansion as a series of powers of the reciprocal thickness parameter involves
coefficients which satisfy singular integral equations. These may be solved with the aid
of the theory of functions of a complex variable [5]. The zero’th order term is the known
half-plane solution [6] and the other terms represent the perturbations originating from
the presence of the lower boundary.

An interesting feature of the solution is that all the displacements are bounded whereas
the half-plane solution shows a normal displacement at the upper bounding line which
becomes logarithmically infinite.

2. STATEMENT OF THE PROBLEM

We consider an isotropic homogeneous elastic layer, occupying the region of space
—o <X <w, -b<j<0 —00 <Z < oo, where (X, ,Z) is a right-handed cartesian
coordinate system (cf. Fig. 1). The layer is loaded by a rough rigid cylinder of infinite
extension in the z-direction, with radius R. The cylinder slides along the boundary in the
positive X-direction with the velocity V. The (constant) coefficient of friction is f. The
cylinder is pressed into the layer by a force P, measured per unit of length in the z-direction
and to maintain the uniform motion a horizontal force fP is applied in the positive X-
direction. At § = ~b, the layer is attached to a rigid base. Within linear elastodynamics
the problem to be solved is formulated by the following system of equations

) u

UV A+ @)z +v,5) = p§{2"
. 2.0

,uV20+(l+u)(u,i+ U9jv)n)‘: = PW,

where u and v are the displacements in the X- and j-directions, respectively, V2 is the plane
Laplacian operator, A and u are the Lamé constants, p is the density of the material of the

Uzvz0
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F1G. 1. Geometry of the problem.
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layer, ¢ is the time and u,; denotes 0u/0X, etc. The solution of (2.1) has to satisfy some
boundary conditions. Before formulating these we introduce a system of moving co-
ordinates (x, y, z), fixed in the rigid body and defined by

x =X—-Vi, y=1y, z=2Z. (2.2)

In these coordinates (2.1) becomes if we confine ourselves to the quasistatic case (8/0t = 0)

2 2 cz
( 2) ,xx+( ) 9yy+(1 )U,xy=05
C1 ct

2 (2.3)
-—— a Upey =0
%) (C ) ,yy ( ) Xy Ll
with
A+2
a=""E g2t < 24
p p
The following boundary conditions have to be satisfied at y = 0
(x — )
= , 0<x<o), .5
v=vot+op 0<x<o 2.5
ty = —fo,, 0<x<o, (2.6)
6, =t,, =0, (x<0;x >0, 2.7

where c is the length of the interval of contact, v, is the displacement at x = 0 and d is the
x-coordinate of the point where the displacement has a horizontal tangent. The stresses
are denoted by a,, 0, and t,,. We note that, assuming ¢ to be prescribed, P, v, and d are
unknown constants which are determined in the theory. We introduce the pressure p at
y =0by

o, = —p(x), 2.8)
which has to meet the inequality
p(x) =0, 0<x<o. 2.9)
At y = —b the boundary conditions are
u=rv=0, (—o0 < x < o) (2.10)

The solution of the problem (2.3) with the boundary conditions (2.5}+2.7) and (2.10)
is strongly dependent on the parameters V/c;, V/c, and we have to distinguish three
different cases: V < ¢;,¢c; < V <cyand V > ¢,. If V < ¢,,(2.3) is an elliptic system, while
it is of the hyperbolic type if I/ > ¢,. In this investigation we limit ourselves to the elliptic
system with

Vie, « 1, (2.11)
so that we may neglect the terms with (V/cy)? and (V/c,)* and we may replace (2.3) by the
equations of elastostatics

1
_ 2v(u9x + v’y)s x= 07
O<v<i), (2.12)

1
Vip4—onu - (u,x+v,y),y =0,

2
Vu+1
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where v = A/[2(4 + p)] is Poisson’s ratio. We note that the method we use for the solution
of (2.12) may equally be employed for the more general system of equations (2.3) with
V/e, < 1, the only difference being the occurrence of an apparent anisotropy.

For the elliptic case the regularity conditions af infinity can be formulated as follows:
u and v and their derivatives tend to zero as |x] — oo, for all values of y in the strip
-b<y<0

The solution of the boundary problem (2.12), (2.5)}+2.7) and (2.10) may be obtained by
transforming it into an integral equation with the aid of Fourier’s integral formula. We have
the relations

FEY — 1 ” igx
10 = g | 1006 ax

_.~__1____ . —i&x
)= ] e

which hold for suitable regular functions f(x). Applying (2.13) to (2.12) and using the
boundary conditions (2.5)-(2.7) and (2.10) we find

K,@eb) i B
f p(é){ Hch) 2(Ilf~v) K’gg )}e“'é"dé, (2.14)

(2.13)

{x,0) =

\/(2) Iz

where 1(x, 0) is the normal displacement v at y = 0, and the functions K,(£b) and K,{&b)
are given by

2¢b— (3 —4v) sinh 2¢6b

K, (ch) = 2&%p% +(3—4v) cosh 2Eb +(5—12v+8v%)’ (215)
‘ 2E2h% — (3 —4v)(1 —2v}{cosh 2Eb 1)
K(eb) = 2E2b2 +(3—4v) cosh 2Eb+(5—12v+8v?)’ (2.16)
respectively.
Application of the convolution theorem to (2.14) yields
6,0 = 525 [ p0)(Suv—3) 5 Sate= ) @17
with
sin= [ FKiende, 2.18)
® sin &t
S0 = [ T Kaeb de 2.19)
We shall write the integral equation (2.17) in non-dimensional form. We mtroduce
x = x'c, = yc, b = gc, Uy = UHC, R = R'c,
y q o 0 (2.20)

p(l—v)

=/, d=dc¢ p=
2nu

3
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and then the equation (2.17) may be written as follows

N2
(szd) +vo, O<x<1. (221)

Syx—y}dy =

1 f
[ 0sitx -9+ 57

In (2.21) we have omitted the primes and we have used the boundary conditions (2.5)
and (2.7).

3. THE THICK PLATE
We consider the case

g> 1 (3.1)
The functions S,(t) and S,(t) can be expanded as uniformly convergent series
Si0) = 21og 4 3 (t)Zk (3.2
= -~ x| — ’ B
! 29 o y 2 )
=) t 2k—1
Sy(t) = —(1=2v)msignt+ Y Pi|=— . (3.3)
k=1 2q

We have evaluated the first four, respective three coefficients in the expansions (3.2) and
(3.3) by numerical integration for several values of Poisson’s ratio. The results are presented
in Table 1.

TABLE 1
%o oy o2 a3 B4 8 B3
v = +2:131 —4-593 +5-577 —6-803 +5993 —17-109 +943
02 +2:268 -5176 +6-781 —8-646 +4-353 —6-308 +9:17
03 +2:440 —-5.728 +7-846 ~-10-238 +3-640 — 6095 +9:31
04 +2:752 —6-623 +9-540 -12.767 +3.025 —6-076 +9-77
0.5 +3-339 —8189 +12.531 ~17-293 +2-551 —6-386 +10-84

After introducing (3.2) and (3.3) into (2.21) the integral equation takes the form

2J p(y) loglx —y dy+ Z er )Zkf ) (x—y)*dy

+ 2(1f_ ) ki o q)zk i f P (x—y)* tdy— gf p(y) dy
+g Ll p(y)dy = (xz—Rd)Z +vo— (o —2 log 29)P, (3.4)
with
gl a5

2(1—v)
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and
1
=J’ p(y) dy, (3.6)
0

where P is the total force per unit length, measured in the unit 2nuc/(1 —v). We differentiate
(3.4) with respect to x and obtain the singular integral equation

L p(y) _ _ x—d °° ke
s 3 B 2k— 2k-2
TH 0 G 2 J D=y dy. (37

A direct way for solving (3.7) is to expand p(y) and 4 in the following series

Z phy)
= £V 3.8
P = 2, gy ey
2 d
= . 3.9
4= 2 G G9)

By equating equal powers of (2d) ! we obtain the system of integral equations

! Pt(Y) N dl < ! 2k 1
[ 2y 4 g = —mdo+ap+ 3 | oo utiz—y-ray
o Y— 2 2R p

f
2(1 =)

S [ hae P e =012, G0

where
ps=0, fors<0 (3.11)

and J; is the Kronecker delta.
The system (3.10} has to be solved step by step. Each of the equations is of the general
form

fo — D) 4y 1 gp(x) = Q(x), (3.12)

where Q(x) is a polynomial.

4. DISCUSSION OF THE FUNDAMENTAL EQUATION (3.12)

The theory of the solution of (3.12) is well-known [5] and we shall not enter into the
details of it. It appears that (3.12) has a solution, bounded both at x = O and at x = 1,
only if the function Q(x) satisfies the condition

flwﬂg—dt =0, 4.1)

o to(l _,_t)l'—B
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where 6 is defined by
1 2(1 - v) ‘
0= arctan 0<0<3) 4.2)
In that case the bounded solution appears to be
_ _sin’nf , 8 J" Q@) dt | sin2nf
pix) = w =) o t(1—0)'"? i—x ' In

The integral in (4.3) can be evaluated by using a method given in [6]. We have calculated

O(x). (4.3)

1 %i0 n
o dt ne Q(2) x
= - , 4.4
J; -0t t—z sinnb | (1 -2 k; Sz “4
where the coeflicients s, are determined from the expansion
o) n e s_
W=S"t +8, 1t 1+...+SO+'—t}'+..., (4.5)

which holds for |f| — oo.
We note that we can always satisfy the equation (4.1) by adjusting the values of d,.

5. APPLICATION

We have evaluated the first four functions py(x), p;(x), po{x) and p;(x) and the corres-
ponding parameters d, d,, d, and d;. We found

_smnO 1 o1 —x)i-°,
Polx) sEXA=%""" (>0) 5.
pi(x) =0, (5.2)
__uf(1—0)sinnd , -0
Palx) = — = = X1 —x) (53)
B,6(1—-0)f sinnf , L—6
= — - — 4
e R U N E SRR (54
together with
do=1-96 (5.5)
_ Bb1-6)f
di= ~Sgi Ty (56)
oy
d, = ——3—0(1—0)(1~—20), (5.7
PR “‘ﬂ‘ 0%(1—0)? — 3529(1—9)(2 50+562) |. (5.8)
2(1—v)
Similar to (3.8) and (3.9) we introduce the following expansion for the total load
S

= —

1=0
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with
1
P = f pdy) dy.
0

Using (5.1)+5.4) we find for the first four P,’s

0(1-6)
°©= 4R
Pl=0a
Py = — o201 =67,
O Bf s
Py =— 16R(1 - )6(1 6)<(1-286).

(5.10)

(5.11)
(5.12)

(5.13)

(5.14)

We also evaluated the first approximations for the displacement v,. From (3.4) we find

d2 1
to = (10 =210g 20)P—32+2 | ply)log ydy

o«

+ Z (2:)2kf P(}’)y 2(1f )kz (2q)2k lf p(y)ka ldy

k=1 1

+g f ply) dy.
0
Analogous to (5.9) we also expand v, in the series

Vo

<o (29)

and we find for the subsequent coeflicients vy,

UOZ

01— (1-07 1+0

boo = (2o —2 log 2+ cot mh)— R g LO)
BJ
Ugy = 12R(1 - )9(1 0)(1-20),
oy = ———92(1 0)*[ag —2 log 2q + 7 cot nf]
fﬁl _ et N __p? 2__
iRy 9)+16R0(1 0)[116% — 150+ 6+ 8(1 + O)L(9)],

where the function L{f) has been defined by

1 2 TQ+k—0)

L(g)=r(1—0)k=1 KCG+k)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

{5.20)
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6. EQUILIBRIUM OF THE STAMP

If we assume that the loading forces P and f P, exerted on the stamp, act through the
center of mass 0 we have the situation as shown in Fig. 2. Evidently there is equilibrium
of forces in the hotizontal and vertical directions, whereas a moment M must be applied
to the cylinder which is equal to

1
M= fPR+ L p(y){d—y dy. 6.1)

F1G. 2. Loading of the cylinder.

In the zero’th approximation (6.1) becomes

_61-06)
M, = 12R

If the stamp is loaded by the forces P and f P, acting through 0, but the moment (6.1)
is not applied, the pressure distribution p(x) and the shear stress ¢, as has been given by
(3.8), (5.1)45.4) and (2.6) respectively, are not in equilibrium with the loading forces. Hence,
the given solution does not hold, although it satisfies the equations and the prescribed
boundary conditions. The reason for this is that in the problem under discussion we only
can prescribe the normal displacement under the stamp together with the stresses outside
of the stamp, but the boundary condition (2.6) has to be replaced by

[3fR+2(1—26)]. (6.2)

ltxl < floyl, (6.3)
while the horizontal force H satisfies the inequality
H < fP. (6.4)

If we apply the forces P and f P, together with the moment M according to (6.1) the boundary
condition (2.6) will be satisfied.

7. NUMERICAL RESULTS

We have computed the pressure distribution p(x), the displacement v, and the total
load P for some values of Poisson’s ratio and the friction coefficient. The results have been
collected in the Tables 2-4.

In Fig. 3 the pressure distribution p(x) is shown for g = 6.
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TABLE 2
p(x)
v x S =01 =05
02 0650107 ' +046610 2 2 —0148 10" 3¢"> 0-688 10~ ‘+048210 g 2-04761073¢"3
] 04 0784107 '+0-5621072¢ 20479107 %g~* 0781107’ +0.547 1072 *2+095110 4 -3
06 077410 1+0555 10 2 q 2 +081510" q’3 0733107 ' +0-513 10~ 2 g7 24068510~ ’ -3
08 0622107140446 10 B g 2+016910 3% 055410 '+0-388 10~ 2q‘2+096910 3 -3
02 06471071 +0523107 %27 2-01671073¢"% 0679107 +0-542 10" %3¢~ 2 —0-624 10" *¢ 3
02 04 0783107 '4063310 By g 2-057910" q‘3 078510~ ‘+062610 2 ~2_.0-59710" 5 -3
06 0775107' 4062710 zq‘2+0858 107%"% 0748107 +0-597 10~ Ny q 2+0-676 10~ 34*3
08  0626107'40-506 10722 +0-185 10 3 “3 0577107 +0-460 10~ 2q*2+010510 g3
02 0644107 '+0577107 %" 2—0-187 10 3q‘3 0671107 +0-596 1072472 -0-763 10~ 3q*~‘
03 04 0782107 1+07001072¢"2~067710"%g"> 0786 10" ' +0-698 10~ 2 “2_098310 4%
06 07771071 4+069510" > g 2+0912107 %> 075810~ l+0673 10~ . q~2+067310" 3 w3
08 0628107 '40-56210 2q“2+020210 3 “3 05921071 +0-52510" 2q'2+011210 2 -3
02 06411071 +06641072g72~0.2221073¢"> 0658107 14+0.679 102" 2 099710 3¢
0-4 04 0781107 ' +0-808 10~ B q72—-084510" “q‘3 07851071 +0-811 10 2(1'2—0-26010'34*3
06 0778107'1+0-80510" 2q‘2+010010 373 0769107 +0-793 107 2¢ "2 +0-656 107 3¢ 3
08 0631107 ' +0654107%¢7 240232107 3¢"% 0612107'+0.631 10" 3¢ 24+0-12510"2¢ 3
02 06371071 +0815107 24720286107 3¢ % 0637107 ' +0-8151072¢"2—0-143 10"
05 04 0780107 '+0998 10~ ’ q 1-011710" 3 -3 078010~ ‘+099810 2 ‘2—0-58410-3(3
06 078010 ‘+0998 10~ 2q*2+011710 3 =3 0780107 +0:998 10~ B g 24058410733
08 0637107 '4+0815107 2" 2+0286 10 Sq*3 0637101 +0-81510~ 2q/2+0.143 107273
TaBLE 3
Vo
v f Yoo Uo1 Vo2
0 01 —0421 —0-125logg  +0198107 3¢~ ! —0625107'¢q"2—0-17910 'g % logq
05 ~0467 —0-122logg +047510" 2 -t 059210 " g 2-017110"¢ 2 loggq
02 01 ~0409 —0-125logg +01351073¢™' —0691107*q~2~0.20210" g 2loggq
05 —0444 —0-123 logqg +0-330 10 2 ' —0-65810° ‘ “2.0197107 g 2 logq
03 01 ~0397-0-125logqg +0985107% ' —0-74610 ¢ 2—-0224 10" g 2loggq
05 ~0423 —0-124logqg +024310" 2 -1 —0709 10" ‘q"z-—0~22010"‘q‘zlogq
04 01 —0375-0-125logqg +0-557107%g~! —0-82010" ' 2~025910" ¢ % logq
05 ~0-390 —0-125 logq +013910~ 2q*’ ~0772107'¢72-025710" g 2 log g
05 01 ~0334 —0-125logg +0 1 ~09161071g72-0-32010" ¢ 2 log g
05 -0334 -0125logg +0 U 0816107172 0320107 g 2 logg
TABLE 4
P
v =0l =05
0 0624107 +0-8951072¢72+0-110107 4¢3 061010~ +0-854 10724~ 2 +0-258 107343
02 0625107140101 107'¢"2+0918 107 5¢ 3 0616 107 % +0.983 107272 +0-221 1073473
03 06251071 +0-112107 14 2+0773 10" %¢"3 062010~ ' +0-11010" g~ 2 +0-189 107 3¢ 2
04 0625107 ' +0-129107 472 4+0.52510" %3 0623107 401291071 240130 10" Bq*3
05 0625107'4+0160107'¢ > +0 q‘3 0:62510"* +0-160 10" g2 +0 q7?




The two dimensional contact problem—I. General considerations 109

pix
ao8 E——
: \ .
0,08 / \ -
vi=0.4
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FIG. 3. The pressure p across the contact region for various values of Poisson’s ratio v and the friction f.
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AGcTpakT—Tlonyvaetcs npuCIMKCHHbC DEITEHHS KOHTAKTHOM 3a0ayW, Xacaloweiics Cnosi KoHewHol
TOJMIKHBE HATPYKEHHOT'O MEPEXOBATHIM IIMIIHHADHYECKHM LITAMIIOM, KOTODbIH ABHXETCH BIOJTH PPAHHIIBI,
TIpennaraercs MOCTOAHHBIM KO3DPHUMEHT Tpenus, HWKHAL CTOPOHA C/OA MPUKPENVIEHA K XKHATKOMY
ocHpBaHHic. B 3aaue npeHeGparaeTcst MHEPLMOHHBIMH YCHusiMu. Peweune npubnuwkaercs ¢ moMolbio
pewenns ans wiockok pedopmanmm, Takoe peulIeHHe BHIPAXAETCA CXOAAIIKMU PANAMH, B CTEHEHAX
ofpaTHOro mapamMerpa TONMIWHE!, TO €CTh, OTHOIIEHUSA BEINYMHEL TONUIBIHBL W ITHHLL KOHTaKkTa. B 3TOM
BRIpAXEHHH KO3DQUUMEHTR YAOBNETBOPSIOT CHHTYIAPHEIM HHTErpaibHLIM ypoBHenHsM, [lenywarotcs
YHCIIEHHBIE PEIYIBTATH AN GONBUINX 3HAYAHHM IapaMeTpa TOALMIUHBE, Bo BTOpOi YacTH npesaraeMoro
uccenoBannsa 6yayT onpeaeneHsl aCHMNTOMUKY AT TOHKOFO CIOs.



