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THE TWO DIMENSIONAL CONTACT PROBLEM OF A
ROUGH STAMP SLIDING SLOWLY ON AN ELASTIC

LAYER-I. GENERAL CONSIDERATIONS AND THICK
LAYER ASYMPTOTICS

J, B. ALBLAS and M. KUIPERS

Technological University Eindhoven, Netherlands

Abstract-An approximate solution is obtained for the contact problem ora layer of finite thickness loaded by a
rough cylindrical stamp which moves along the boundary. The coefficient of friction is assumed to be constant.
The lower side of the layer is attached to a rigid base. In the problem inertial forces are neglected and the solution
is approximated by a plane strain solution. This solution is presented in the form of a (convergent) series expan
sion in powers of the reciprocal thickness parameter, ie. the ratio of the values of the thickness and the length of
the contact region. The coefficients in this expansion satisfy singular integral equations. Numerical results are
obtained for large values of the thickness parameter. In part II of this investigation the thin layer asymptotics
will be given.

1. INTRODUCTION

IN SOME recent papers [1,2] we considered an elastic layer loaded in plane strain by rigid
smooth stamps. The lower side of the layer was supposed to be attached to a rigid base or
to slide without friction along the base, e.g. on a fluid film. In [1] we constructed an
approximate solution for the problem of a cylindrical stamp on a layer with a very small
thickness parameter, i.e. the ratio ofthe thickness of the layer and the width (or half width)
of the contact region. Dealing with a rectangular block loaded by a force and a moment [2]
we obtained approximate solutions both for the thick and for the thin layer. In the papers
[1] and [2] we treated compressible and incompressible layers separately. We did not
consider the thick layer asymptotics for the cylindrical stamp in [1], as this problem has
been treated adequately in the literature [3,4].

In this paper, consisting of two parts, we deal with a class of similar problems which
likewise may be discussed within the framework of linear elasticity. We now assume that
the stamp is rigid and rough, and slides slowly along the boundary of the layer. Obviously
we only have to consider a layer attached to a fixed base. When dealing with thin layers
we also limit our considerations to compressible material. The extension of the problem
under discussion to some of the other boundary value problems that have been treated
in [1] and [2] is obvious.

We shall assume that the friction coefficient is constant and that the motion is slow
to justify the disregard of inertial forces.

In the first part of the paper we derive an integral equation for the pressure under the
stamp. A rigorous analytical solution for this equation may be obtained in the form of a
series expansion in powers of the reciprocal thickness parameter. It may be expected that
this formal solution converges for all values of the thickness parameter larger than two.
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(2.1)

However, for practical computations, only values larger than four can be taken into con
sideration. With the methods of part II very small values of the thickness parameter
are studied. The approximate solution for intermediate values of the thickness parameter
may be obtained by interpolation of the results of the two parts.

The expansion as a series of powers of the reciprocal thickness parameter involves
coefficients which satisfy singular integral equations. These may be solved with the aid
of the theory of functions of a complex variable [5]. The zero'th order term is the known
half-plane solution [6] and the other terms represent the perturbations originating from
the presence of the lower boundary.

An interesting feature of the solution is that all the displacements are bounded whereas
the half-plane solution shows a normal displacement at the upper bounding line which
becomes logarithmically infinite.

2. STATEMENT OF THE PROBLEM

We consider an isotropic homogeneous elastic layer, occupying the region of space
- 00 < x < 00, - b < Y < 0, - 00 < z < 00, where (x, y, z) is a right-handed cartesian
coordinate system (cf. Fig. 1). The layer is loaded by a rough rigid cylinder of infinite
extension in the z-direction, with radius R. The cylinder slides along the boundary in the
positive x-direction with the velocity V. The (constant) coefficient of friction is f. The
cylinder is pressed into the layer by a force P, measured per unit oflength in the z-direction
and to maintain the uniform motion a horizontal force f P is applied in the positive x
direction. At y = - b, the layer is attached to a rigid base. Within linear elastodynamics
the problem to be solved is formulated by the following system of equations

02U
J.tV 2u+(A.+J.t)(u,x+ v'ji)'x = Pot2 '

02V
J.tV 2 v+(A,+J.t)(u,x+ v,ji),y = p ot2 '

where u and v are the displacements in the x- and y-directions, respectively, V2 is the plane
Laplacian operator, A, and J.t are the Lame constants, p is the density of the material of the

b

u =v =0

FIG. 1. Geometry of the problem.



The two dimensional contact problem-I. General considerations 10l

layer, t is the time and U,i denotes au/ox, etc. The solution of (2.1) has to satisfy some
boundary conditions. Before formulating these we introduce a system of moving co
ordinates (x, y, z), fixed in the rigid body and defined by

x=x-Vt, y = y, z = z. (2.2)

In these coordinates (2.1) becomes if we confine ourselves to the quasistatic case (a/at = 0)

with
2 A+2Jl

Cl =--,
P

2 Jl
C2 =-,

p

(2.3)

(2.4)

(0 ~ x ~ c),

The following boundary conditions have to be satisfied at y = 0

(x - d)2
V = vo+ 2R (2.5)

txy = - fO'y, (0 ~ x ~ c),

O'y=tXY=O' (x<O;x>c),

(2.6)

(2.7)

where c is the length of the interval of contact, Vo is the displacement at x = 0 and d is the
x-coordinate of the point where the displacement has a horizontal tangent. The stresses
are denoted by O'x, O'y and tXY ' We note that, assuming c to be prescribed, P, Vo and dare
unknown constants which are determined in the theory. We introduce the pressure p at
y = 0 by

ay = -p(x), (2.8)

which has to meet the inequality

p(x) ~ 0,

At Y = - b the boundary conditions are

(0 ~ x ~ c). (2.9)

(2.12)

V/C2 « 1, (2.11)

so that we may neglect the terms with (V/cd2 and (V/C2)2 and we may replace (2.3) by the

equations of elastostatics 2 1 I
V u + 1_ 2v (u,x +V,y), x = 0,

(0 < v < t),
2 1

V v+ 1_2/u,x+v,y),y = 0,

u = v = 0, (-00 < x < (0). (2.10)

The solution of the problem (2.3) with the boundary conditions (2.5H2.7) and (2.10)
is strongly dependent on the parameters V/Cl, V/C2 and we have to distinguish three
different cases: V < C2, C2 < V <Cl and V> Cl' If V < C2, (2.3) is an elliptic system, while
it is of the hyperbolic type if V > C2' In this investigation we limit ourselves to the elliptic
system with
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(2.13)

where v == A/[2(A+Jl)J is Poisson's ratio. We note that the method we use for the solution
of (2.12) may equally be employed for the more general system of equations (2.3) with
V/C2 < 1, the only difference being the occurrence of an apparent anisotropy.

For the elliptic case the regularity conditions at infinity can be formulated as follows:
u and v and their derivatives tend to zero as Ixj -> 00, for all values of y in the strip
-b s; y s O.

The solution of the boundary problem (2.12), (2.5H2.7) and (2.10) may be obtained by
transforming it into an integral equation with the aid ofFourier's integral formula. We have
the relations

j(~) = )(21t) f:co j(x)ei~x dx,

j(x) = J(~1t) f:co J(e)e-i~X de,

which hold for suitable regular functions j(x}. Applying (2.13) to (2.12) and using the
boundary conditions (2.5H2.7) and (2.10) we find

V(x,O) = _b_ 1- v fco Pw{K 1(eb)+~ Kz(~b)} e- i~x de, (2.14)
J(21t} Jl - OCJ ~b 2(1- v) eb

where v(x,O) is the normal displacement vat y= 0, and the functions Kl(~b) and K2(~b)

are given by

, 2eb-(3-4v)sinh2c;b
Kl(~b) = 2~2b2+(3-4v)cosh2eb+(5 12v+8v2)'

2~2b2-(3-4v)(I-2v)(cosh2c;b-l)
Kz(eb) = 2eb2+(3-4v)cosh2~b+(5 12v+8v2)'

respectively.
Application of the convolution theorem to (2.14) yields

with

We shall write the integral equation (2.17) in non-dimensional form. We introduce

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

, p(l- v)
p =--,

2lCJ.l

x = x'c, y = y'c,

c; = ¢'/c, d == d'c,

b qc, Vo == voC, R = R'c,
(2.20)
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and then the equation (2.17) may be written as follows
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(0 ::; x ::; 1). (2.21)

In (2.21) we have omitted the primes and we have used the boundary conditions (2.5)
and (2.7).

3. THE THICK PLATE

We consider the case

q»1.

The functions Sl(t) and S2(t) can be expanded as uniformly convergent series

It\ 00 (t)2kSl(t) = 21og-
2

+ L (J,k - ,
q k=O 2q

00 (t)2k-l
S2(t) = -(1-2v)n sign t+ L 13k -2 .

k=l q

(3.1)

(3.2)

(3.3)

We have evaluated the first four, respective three coefficients in the expansions (3.2) and
(3.3) by numerical integration for several values of Poisson's ratio. The results are presented
in Table 1.

TABLE I

lXo IXI 1X2 IX] PI P2 P3

v=o +2-131 -4·593 +5·577 -6·803 +5·993 -7·109 +9·43
0·2 +2·268 -5·176 +6·781 -8·646 +4·353 -6·308 +9·17
0·3 +2·440 -5·728 + 7·846 -10·238 +3·640 -6·095 +9·31
0·4 +2·752 -6·623 +9·540 -12·767 +3·025 -6·076 +9·77
0·5 +3·339 -8·189 + 12·531 -17·293 +2·551 -6·386 +10·84

After introducing (3.2) and (3.3) into (2.21) the integral equation takes the form

2 t p(y) loglx - YI dy + I (2(J,k)2k rl

p(y)(x - y)2k dyJo k= 1 q Jo

+2(1~Vh~d2q~kk 1 s: p(Y)(X_y)2k-l dy-g s: p(y)dy

I i (X-d)2
+g x p(y)dy = 2R +Vo-«J,0-2Iog2q)P,

with

1-2v
g = 2(1- vln,

(3.4)

(3.5)
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(3.6)p = (P(Y)dY,

where P is the total force per unit length, measured in the unit 2nf..lcj(1- v). We differentiate
(3.4) with respect to x and obtain the singular integral equation

(l = 0, 1,2 ...),

1
1p(y) x-d ~ Cf.k· k 11 2k 1
-dy-gp(x) = -- L.~ p(y)(x-y) - dy

o x-y 2R k=1 (2q) 0

~ 13k 2k-l fl 2k-2
2(1-v)k~1 (2q)2k 1 --2-Jo p(y)(x-y) dy.

A direct way for solving (3. 7) is to expand ply) and d in the following series

en p,(y)
P(y) = L (2 )"1=0 q

en d
l

d = L (2 )1'
'=0 q

By equating equal powers of (2d)-1 we obtain the system of integral equations

(0
1

PI(Y) dy+gp(x) -2
x
Rbo,+2

d
R' + f iY.kk (I Pl-2k(y)(X- y?k-l dy

Jc y-x k=1 Jo
f ~ 2k-l (I 2k 2

+2(1-vh~1 13k-2-Jo Pl-2k(y)(X-y) - dy,

where

Ps = 0, for s < 0

(3.7)

(3.8)

(3.9)

(3.1 0)

(3.11)

and bOl is the Kronecker delta.
The system (3.10) has to be solved step by step. Each of the equations is of the general

form

( p,(y) dy +gp(x) = Q(x),
Jo y-x

where Q(x) is a polynomial.

4. DISCUSSION OF THE FUNDAMENTAL EQUATION (3.12)

(3.12)

(4.1)

The theory of the solution of (3.12) is well-known [5J and we shall not enter into the
details of it. It appears that (3.12) has a solution, bounded both at x = 0 and at x = 1,
only if the function Q(x) satisfies the condition

(I Q(t)
J

o
to(1-t)1 odt=O,
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where () is defined by

1 2(1-v)
() = ~arctan f(1-2v)' (0 < () < t). (4.2)

(4.3)

In that case the bounded solution appears to be

( ) = _ sin
2

nO 8(1_ )1- 811
Q(t) ~ sin 2n() Q( )

PI X 2 X x 8(1)1 8 + 2 x .not -t t-x n

The integral in (4.3) can be evaluated by using a method given in [6]. We have calculated

(1 Q(t) dt _ ne";o [Q(Z) n kJ
Jot0(l-t)1-ot-z-sinn() zO(1_Z)1-0 k~lSkZ , (4.4)

where the coefficients Sk are determined from the expansion

Q(t) n n-l Ll
0(1 )1-0 = snt +Sn-l t + ... +so+-+""t -t t

which holds for ItI --.. 00.

We note that we can always satisfy the equation (4.1) by adjusting the values of d,.

(4.5)

(5.1)(>0),

5. APPLICATION

We have evaluated the first four functions Po(x), Pl(X), P2(X) and P3(X) and the corres
ponding parameters do, d1 , d2 and d3 • We found

sin n() 1 0 1 - 0
Po(x) = -n-· 2R x (1- x) ,

P1(X) = 0, (5.2)

1X1()(1-() sin nO 0(1_ )1-0
P2(X) = 4R n x x ,

P2()(1- ()f sin n() 0 1-6
P3(X) = - 16R(1-v) -n-x (I-x) [3x+(1-5()],

(5.3)

(5.4)

together with
do = 1-()

d __ Pl()(1-0)f
1 - 8(I-v)'

(5.5)

(5.6)

1X1
d2 = -3()(1-()(1-20),

d = _f_ [alP1 (J2(1-O)2 - 3P20(I_0)(2_ 50+ 5(2)]
3 2(1- v) 8 16 .

Similar to (3.8) and (3.9) we introduce the following expansion for the total load

p= f2
1=0 (2q)1'

(5.7)

(5.8)

(5.9)
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P, = s: PI(Y) dy.

Using (5.1H5.4) we find for the first four P/s

0(1-0)
Po = - 4R '

PI = 0,

P = -~02(1-0)2
2 8R '

P3 = - 16:t/- v) 0
2
(1- 0)2(1- 28).

(5.10)

(5.11 )

(5.12)

(5.13)

(5.14)

We also evaluated the first approximations for the displacement Vo' From (3.4) we find

d
2 rl

Vo = (iXo - 2 log 2q)P - 2R +2 J
o

p(y) log y dy

~ r1.k 11 2k f ~ Pk II )2k- 1
+ L. (2 )2k p(y)y dY- 2-(1) L. (2 )2k-l p(y Y dy

k= 1 q 0 - V k= 1 q 0

+g J: p(y)dy. (5.15)

Analogous to (5.9) we also expand Vo in the series

(jJ VOl

Vo = I-I
1=0 (2q)

and we find for the subsequent coefficients VOl

PI!
VOl = 12R(1_v)8(1-8)(1-28),

(5.16)

(5.17)

(5.18)

+ 16~~~ v) 8(1- 8) +1~~ 8(1- ( 2)[1182 -150+6+8(1 +O)L(O)], (5.19)

where the function L(8) has been defined by

(5.20)
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(6.1)

6. EQUILIBRIUM OF THE STAMP

If we assume that the loading forces P and f P, exerted on the stamp, act through the
center of mass 0 we have the situation as shown in Fig. 2. Evidently there is equilibrium
of forces in the horizontal and vertical directions, whereas a moment M must be applied
to the cylinder which is equal to

M = fPR+ f p(y)(d-y)dy.

FIG. 2. Loading of the cylinder.

In the zero'th approximation (6.1) becomes

8(1-8)
M o = 12R [3fR+2(1-20)]. (6.2)

If the stamp is loaded by the forces P and fP, acting through 0, but the moment (6.1)
is not applied, the pressure distribution p(x) and the shear stress txy , as has been given by
(3.8), (5.1H5.4) and (2.6) respectively, are not in equilibrium with the loading forces. Hence,
the given solution does not hold, although it satisfies the equations and the prescribed
boundary conditions. The reason for this is that in the problem under discussion we only
can prescribe the normal displacement under the stamp together with the stresses outside
of the stamp, but the boundary condition (2.6) has to be replaced by

Itxyl ~fl(1yl,

while the horizontal force H satisfies the inequality

H ~fP.

(6.3)

(6.4)

Ifwe apply the forces P and f P, together with the moment M according to (6.1) the boundary
condition (2.6) will be satisfied.

7. NUMERICAL RESULTS

We have computed the pressure distribution p(x), the displacement Vo and the total
load P for some values of Poisson's ratio and the friction coefficient. The results have been
collected in the Tables 2-4.

In Fig. 3 the pressure distribution p(x) is shown for q = 6.
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TABLE 2

pix)

f = 0·1 f = 0·5

0.2 0·65010- 1+0·46610 2 q - 2 -0.148 10- .1 q-.1 0.688 10- 1 +0.482 10- 1q' 1-0.47610- 3q- 3

o 0-4 0.78410- 1+0·5621O- 1q-l_0-4791O- 4 q-.1 0.78110- 1+0·5471O- 1q-l+0·9511O- 4 q'.1
0.6 0·7741O'1+0·5551O- 1q-l+0·8151O- 4 q-.1 0.73310- 1+0·5131O- 2q-2+0·6851O- 3q-3
0.8 0·62210- 1 +0.446 1O- 2q-2 +0.16910- .1q -.1 0.55410- 1+0.38810- 2q-2 +0.969 1O- 3q-.1

0.2 0.64710- 1 +0.523 10- 2q- 2-0.167 1O- 3q-.1 0.67910- 1+0.54210- 2q- 2-0.62410- .1q -.1
0.2 0·4 0.783 10- 1+ 0·633 10- 2q- 2-0.579 10- 4q -3 0.785 10- 1 +0.626 10- lq - 1-0.597 10- 5q -.1

0.6 0.77510- I +0.627 1O- 2q- 1+0.858 1O- 4q-.1 0.74810- 1 +0.597 1O- 1q-l +0.67610- .1 q '.1
0.8 0.62610- 1 +0·506 1O- 2q-l +0·185 lO-.1q -.1 0·577 10- 1+0.460 10- lq-l +0.10510- 2q -.1

0.2 0·64410- 1+0·577 1O- 1q- 1-0.187 1O-.1q'.1 0·671 10- 1+0.596 10- lq-2 -0.763 1O- 3q-.1
0.3 0·4 0·78210- 1 +0·700 1O- 1q-2 -0·677 1O- 4q-.1 0.78610- 1+0.69810- lq-2 -0.983 1O- 4q-.1

0.6 0·777 10- 1+0·695 to'2q-l +0·912 1O- 4q-.1 0·75810- I +0.673 1O- 1q-l +0.673 1O-.1q - 3

0.8 0·62810- 1 +0·562 1O- 1q-l +0.20210- .1q -.1 0·59210- I +0.525 1O- 1q-2 +0.11210- 2q -.1

0.2 0.64110- 1 +0·664 1O- 1q-2 -0·22210- .1q -.1 0.65810- 1+0.679 1O- 2q-l -0.99710- .1q -.1
0-4 0·4 0·7811O- 1 +0·8081O- 1q-l-0·8451O- 4q-.1 0·7851O- 1 +0·8111O- 2q-l_0·2601O- .1q-.1

0.6 0.77810- 1 +0·805 1O- 2q- 2+0.100 1O- .1q-.1 0.76910- 1+0.793 1O- 1q- 1+0.65610- .1q -.1
0·8 0·6311O- 1 +0·65410- 1q-l+0·2321O-.1q -.1 0·6121O- 1+0·6311O- 1q-l+0·1251O- 2q-.1

0.2 0·63710- 1 +0·815 10" 2q 'l -0.28610- .1q -.1 0.63710- 1 +0.815 1O- 1q-2 -0.14310- 2q -.1
0.5 0·4 0·78010- I +0.99810- 2q- 2-0.117 lO-.1q -.1 0.78010- 1+0.998 1O- 2q-2 -0.584 1O-.1q -.1

0.6 0·78010- I +0.998 1O- 2q-l +0.11710- .1q -.1 0.78010- 1+0.99810- 2q-2 +0.58410- .1 q .1
0.8 0·637 10- 1 + 0.815 10- 2q- 2+0.286 10- .1q-.1 0.637 10- I +0.815 10- lq - 2+0.143 10- 2q -3

TABLE 3

Vo

f Voo VOl V02

0 0·1 -0·421-0·125Iogq +0·1981O-.1q-' -0·62510- Iq -2 -0.17910- I q - 21og q
0·5 -0·467 -0·122Iogq +0·4751O- 1q-1 -0·5921O- lq-2-0·1711O- l q- 1 logq

0·2 0·1 -0·409 -0·125 log q +0·1351O-.1q -' -0·69110- lq-2 -0·20210- 'q- 2 Iog q
0·5 -0·444-0·123Iogq +0·3301O- 1q-1 -0.65810- Iq-l -0.197 1O- l q- 1 log q

0·3 0·1 -0·397 -0·125Iogq +0.985 1O- 4 q- I -0·7461O- l q-2_0·2241O- l q- 1 logq
0·5 -0·423 -0·124 log q +0·2431O- 1q-1 -0·709 1O- l q-2 -0·22010- Iq-l log q

0·4 0·1 -0·375 -0·125Iogq +0·5571O- 4 q-' -0·820 1O- 1q-l -0·259 1O- ' q-2 log q
0·5 -0·390-0·125Iogq +0·1391O- 1q-1 -0·772 1O- lq-l -0.257 10-lq--1log q

0·5 0·1 -0·334 -0·125Iogq +0 q-I -0·91610- Iq-l -0.32010- ' q - 2Iog q
0·5 -0·334 -0·125Iogq +0 q-I -0.816 lO- l q- 2-0.320 10-lq-l log q

TABLE 4

p

f= 0·1

o 0·62410- 1+0·895 1O- 2q- 2+0.110 1O- 4 q-.1

0.2 Q.625 10- 1 +0·1011O-- lq- 1+0.918 1O- 5q-.1

0.3 0·62510- 1 +0.112 10- I q -2 +0.773 1O- 5q-.1

0.4 0.62510- I +0.129 1O- lq- 1 +0.52510- 5q -.1

0.5 0.6251O- 1+0.1601O- lq-2+0 q-.1

f = 0·5

0.610 10- 1+0·8541O- 1q-l +0.25810- .1q -.1

0.61610- 1 +0.983 1O- 1q- 2+0.2211O-.1q -.1

0.62010- 1+0·110 lO- lq- 2+0.189 1O-.1q -.1

0.62310- 1 +0.129 1O- l q-2 +0.130 1O-.1q -.1

0.62510- 1 +0.160 1O-lq-2+0 q-.1



The two dimensional contact problem-I. General considerations 109

PII)

t
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n~~.,
OJl2+-."....--+----+---+--~---+_--+---+----+---+--.;...~

O.Oi.......'---__-L-__-+ -'-__-+ .......__+ __-.J'--__-+-__~ +_---

o 0.2 0.4 0.8 \.0 ___._

FIG. 3. The pressurep across the contact region for various values of Poisson's ratio v and the frictionf
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A6cTpaKT-nOny<laeTCll: npH6nH)KeHHble peIIIeHHll: KOHTaKTHoi!: 3a.ua'lH, KaCalOIIJ:eAcll cnoll KOHe'lHolt
TOJIIIJ:HHbI HarpylKeHHoro mepexoBaTbIM UHJIHH,UpH'leCKHM lllTaMIIOM, KOTOpbIH ,UBHlKeTCII BllOJIb rpaHHUM.
Dpe.unaraeTcli nocTollHHbliI: K03cPcPHUHeHT TpeHHII. HHlKHlIlI CTopOHa cnoll IIpl1KpenneHa K )Kl1TKOMy
ocapBaHHIO. B 3a.ua'le npeHe6paraeTclI HHepUIIOHHblMII YCIlJIIIIIMII. PellleHlle npll6JIIIlKaeTCli c nOMOll.\hlO
pell.\eHHII )J;JIJI ITJIOCKOi!: .n;ecPopMaUltH. TaKoe pemeHlIe Bblpa)KaeTCll CXO,QlI!I.lHMIl: pll,UaMH, B CTeneHlIX
06paTHoro napaMeTpa TOnIIJ:HHbI, TO eCTb, OTHOllleHHII BeJIH'IHHbI TOJIIIJ:b1HbI Ii ,UJIIiHbI KORTaKTa. B 3TOM
BbIpa)l(eHHH K03cPcPHUHeHTbl yJ].OBJIeTBopllIOT CHHfYJIIlPHblM HHTerpaJIbHbIM YPOBHeHHIIM. neJIY'IaIOTCR
'1RcneHHble Pl;,lYJTbTaTbI .n;JIJI 60JIbIIJ:HX 3Ha'iaHIIH napaMeTpa TOJIIIJ:HHbI. Bo BTOPOU '1aCTH npeAJIaraeMOro
Hccne.n;OBaHHII 6y.n;YT onpeAeneHbI aCHMnToMlfKH AJIll TOHKoro CJIOJl.


